Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio istituziona...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.35789/fib.b...
Part of book or chapter of book . 2020 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Structural behavior of precast tunnel segments with macrosynthetic fibers during TBM operations: a numerical study

Authors: Ivan Trabucchi; Antonio Conforti; Giuseppe Tiberti; Giovanni Plizzari; Ralf Winterberg;

Structural behavior of precast tunnel segments with macrosynthetic fibers during TBM operations: a numerical study

Abstract

The use of fiber reinforced concrete in tunnel linings, with or without conventional rebars, has increased in the two last decades, especially in segmental linings. In the meanwhile, in the scientific community there was a growing interest on macro-synthetic fibers for use in underground structures. Within this framework, the present study investigates the possibility of using macro-synthetic fiber reinforcement in precast tunnel segments by means of a numerical study. Firstly, an experimental program based on three point bending tests was carried out on polypropylene fiber reinforced concretes (PFRCs) characterized by different fiber contents in order to assess their post-cracking residual strength. Secondly, the corresponding stress vs. crack opening laws, representative of the PFRCs investigated, were calculated through inverse analysis procedure. Then, a segment of a typical tunnel lining having small diameter was adopted as reference to optimize the reinforcement solution (macro-synthetic fibers and conventional rebars, i.e. hybrid solution) and to study its structural behavior by numerical analyses. Particular attention was devoted to the Tunnel Boring Machine (TBM) thrust jack phase, in which the TBM moves forward by pushing the thrust jacks on the bearing pads of the latest assembled ring, introducing high-concentrated forces in the lining.

Related Organizations
Keywords

Fiber reinforced concrete; Macro-synthetic fibers, Numerical analyses; Splitting phenomena; Thrust jack.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!