
handle: 10356/99171 , 10220/13510
In this paper, we consider the parametric version of Wiener systems where both the linear and nonlinear parts are identified with clipped observations in the presence of internal and external noises. Also the static functions are allowed noninvertible. We propose a classification based support vector machine (SVM) and formulate the identification problem as a convex optimization. The solution to the optimization problem converges to the true parameters of the linear system if it is an finite-impulse-response (FIR) system, even though clipping reduces a great deal of information about the system characteristics. In identifying a Wiener system with a stable infinite-impulse-response (IIR) system, an FIR system is used to approximate it and the problem is converted to identifying the FIR system together with solving a set of nonlinear equations. This leads to biased estimates of parameters in the IIR system while the bias can be controlled by choosing the order of the approximated FIR system.
:Engineering::Electrical and electronic engineering::Electronic systems::Signal processing [DRNTU], 791, DRNTU::Engineering::Electrical and electronic engineering::Electronic systems::Signal processing
:Engineering::Electrical and electronic engineering::Electronic systems::Signal processing [DRNTU], 791, DRNTU::Engineering::Electrical and electronic engineering::Electronic systems::Signal processing
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 25 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
