
arXiv: 2508.17844
Medical image segmentation models struggle with rare abnormalities due to scarce annotated pathological data. We propose DiffAug a novel framework that combines textguided diffusion-based generation with automatic segmentation validation to address this challenge. Our proposed approach uses latent diffusion models conditioned on medical text descriptions and spatial masks to synthesize abnormalities via inpainting on normal images. Generated samples undergo dynamic quality validation through a latentspace segmentation network that ensures accurate localization while enabling single-step inference. The text prompts, derived from medical literature, guide the generation of diverse abnormality types without requiring manual annotation. Our validation mechanism filters synthetic samples based on spatial accuracy, maintaining quality while operating efficiently through direct latent estimation. Evaluated on three medical imaging benchmarks (CVC-ClinicDB, Kvasir-SEG, REFUGE2), our framework achieves state-of-the-art performance with 8-10% Dice improvements over baselines and reduces false negative rates by up to 28% for challenging cases like small polyps and flat lesions critical for early detection in screening applications.
Accepted to CVAMD Workshop at ICCV 2025
Machine Learning, FOS: Computer and information sciences, Computer Vision and Pattern Recognition (cs.CV), Computer Vision and Pattern Recognition, Machine Learning (cs.LG)
Machine Learning, FOS: Computer and information sciences, Computer Vision and Pattern Recognition (cs.CV), Computer Vision and Pattern Recognition, Machine Learning (cs.LG)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
