Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archivio Istituziona...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Frontiers in Neuroinformatics
Article . 2019 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Frontiers in Neuroinformatics
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2019
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Frontiers in Neuroinformatics
Article . 2019
Data sources: DOAJ
https://dx.doi.org/10.60692/8s...
Other literature type . 2019
Data sources: Datacite
https://dx.doi.org/10.60692/1n...
Other literature type . 2019
Data sources: Datacite
versions View all 9 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

PManalyzer: A Software Facilitating the Study of Sensorimotor Control of Whole-Body Movements

PManalyzer: برنامج يسهل دراسة التحكم الحسي الحركي لحركات الجسم بالكامل
Authors: Thomas H. Haid; Matteo Zago; Arunee Promsri; Arunee Promsri; Aude-Clémence M. Doix; Peter A. Federolf;

PManalyzer: A Software Facilitating the Study of Sensorimotor Control of Whole-Body Movements

Abstract

El análisis de movimiento se utiliza para estudiar la funcionalidad o disfuncionalidad del sistema neuromuscular, ya que los movimientos humanos son el resultado directo del control neuromuscular. Sin embargo, el análisis de movimiento a menudo se basa en medidas que cuantifican aspectos simplificados de un movimiento, como ángulos articulares específicos, a pesar de la complejidad bien conocida de las interacciones de segmentos. Por el contrario, el análisis de los patrones de movimiento de todo el cuerpo puede ofrecer una nueva comprensión de la coordinación del movimiento y el rendimiento del movimiento. La investigación clínica y las evaluaciones de técnicas deportivas sugieren que el análisis de componentes principales (PCA) proporciona información novedosa y valiosa sobre los aspectos de control del sistema neuromuscular y cómo se relacionan con los patrones de coordinación. Sin embargo, la implementación de los cálculos de PCA consume mucho tiempo y requiere conocimientos matemáticos y habilidades de programación, lo que limita drásticamente su aplicación en la investigación actual. Por lo tanto, el objetivo de este estudio es presentar la herramienta de software Matlab "PManalyzer" para facilitar y fomentar la aplicación de conceptos de PCA de última generación en la ciencia del movimiento humano. Los conceptos generalizados de PCA implementados en el PManalyzer permiten a los usuarios aplicar una variedad de variables PCA independientes del conjunto de marcadores en cualquier dato cinemático y visualizar los resultados con gráficos personalizables. Además, los patrones de movimiento extraídos se pueden explorar con opciones de video que pueden ayudar a probar hipótesis relacionadas con la interacción de segmentos. Además, el software se puede modificar y adaptar fácilmente a cualquier aplicación específica.

L'analyse des mouvements est utilisée pour étudier la fonctionnalité ou le dysfonctionnement du système neuromusculaire, car les mouvements humains sont le résultat direct du contrôle neuromusculaire. Cependant, l'analyse de mouvement repose souvent sur des mesures qui quantifient des aspects simplifiés d'un mouvement, tels que des angles d'articulation spécifiques, malgré la complexité bien connue des interactions entre segments. En revanche, l'analyse des schémas de mouvement du corps entier peut offrir une nouvelle compréhension de la coordination des mouvements et de la performance des mouvements. La recherche clinique et les évaluations des techniques sportives suggèrent que l'analyse en composantes principales (ACP) fournit des informations nouvelles et précieuses sur les aspects de contrôle du système neuromusculaire et leur lien avec les schémas de coordination. Cependant, la mise en œuvre des calculs PCA prend du temps et nécessite des connaissances mathématiques et des compétences en programmation, ce qui limite considérablement son application dans la recherche actuelle. Par conséquent, l'objectif de cette étude est de présenter l'outil logiciel Matlab « PManalyzer » pour faciliter et encourager l'application de concepts PCA de pointe en science du mouvement humain. Les concepts PCA généralisés mis en œuvre dans le PManalyzer permettent aux utilisateurs d'appliquer une variété de variables PCA indépendantes de l'ensemble de marqueurs sur toutes les données cinématiques et de visualiser les résultats avec des tracés personnalisables. En outre, les modèles de mouvement extraits peuvent être explorés avec des options vidéo qui peuvent aider à tester les hypothèses liées à l'interaction des segments. De plus, le logiciel peut être facilement modifié et adapté à toute application spécifique.

Motion analysis is used to study the functionality or dysfunctionality of the neuromuscular system, as human movements are the direct outcome of neuromuscular control. However, motion analysis often relies on measures that quantify simplified aspects of a motion, such as specific joint angles, despite the well-known complexity of segment interactions. In contrast, analyzing whole-body movement patterns may offer a new understanding of movement coordination and movement performance. Clinical research and sports technique evaluations suggest that principal component analysis (PCA) provides novel and valuable insights into control aspects of the neuromuscular system and how they relate to coordinative patterns. However, the implementation of PCA computations are time consuming, and require mathematical knowledge and programming skills, drastically limiting its application in current research. Therefore, the aim of this study is to present the Matlab software tool "PManalyzer" to facilitate and encourage the application of state-of-the-art PCA concepts in human movement science. The generalized PCA concepts implemented in the PManalyzer allow users to apply a variety of marker set independent PCA-variables on any kinematic data and to visualize the results with customizable plots. In addition, the extracted movement patterns can be explored with video options that may help testing hypotheses related to the interplay of segments. Furthermore, the software can be easily modified and adapted to any specific application.

يستخدم تحليل الحركة لدراسة وظائف أو خلل وظيفي في الجهاز العصبي العضلي، حيث أن الحركات البشرية هي النتيجة المباشرة للتحكم العصبي العضلي. ومع ذلك، غالبًا ما يعتمد تحليل الحركة على التدابير التي تحدد الجوانب المبسطة للحركة، مثل زوايا المفصل المحددة، على الرغم من التعقيد المعروف لتفاعلات القطعة. في المقابل، قد يوفر تحليل أنماط حركة الجسم بالكامل فهمًا جديدًا لتنسيق الحركة وأداء الحركة. تشير الأبحاث السريرية وتقييمات التقنيات الرياضية إلى أن تحليل المكونات الرئيسية (PCA) يوفر رؤى جديدة وقيمة حول جوانب التحكم في الجهاز العصبي العضلي وكيفية ارتباطها بالأنماط التنسيقية. ومع ذلك، فإن تنفيذ حسابات PCA يستغرق وقتًا طويلاً، ويتطلب معرفة رياضية ومهارات برمجة، مما يحد بشكل كبير من تطبيقه في البحث الحالي. لذلك، فإن الهدف من هذه الدراسة هو تقديم أداة برنامج Matlab "PManalyzer" لتسهيل وتشجيع تطبيق أحدث مفاهيم PCA في علوم الحركة البشرية. تسمح مفاهيم PCA المعممة المطبقة في PManalyzer للمستخدمين بتطبيق مجموعة متنوعة من متغيرات PCA المستقلة لمجموعة العلامات على أي بيانات حركية وتصور النتائج باستخدام مخططات قابلة للتخصيص. بالإضافة إلى ذلك، يمكن استكشاف أنماط الحركة المستخرجة باستخدام خيارات الفيديو التي قد تساعد في اختبار الفرضيات المتعلقة بتفاعل الشرائح. علاوة على ذلك، يمكن تعديل البرنامج بسهولة وتكييفه مع أي تطبيق محدد.

Keywords

Artificial intelligence, coordination, Kinematics, MOTION, Health Professions, postural control, Engineering, Classical mechanics, CROSS-VALIDATION, Human–computer interaction, motion analysis, Motion (physics), Physics, Life Sciences, Programming language, FOS: Philosophy, ethics and religion, principal component analysis PCA, Analysis of Electromyography Signal Processing, BALANCE, Principal (computer security), Physical Sciences, Motion analysis, Clinical gait analysis; Coordination; Motion analysis; Postural control; Principal component analysis PCA; Sensorimotor control, PRINCIPAL COMPONENT ANALYSIS, Motion capture, Movement (music), RC321-571, MATLAB, Cognitive Neuroscience, Variety (cybernetics), Biomedical Engineering, Principal component analysis, clinical gait analysis, Aesthetics, Neurosciences. Biological psychiatry. Neuropsychiatry, Physical Therapy, Sports Therapy and Rehabilitation, Set (abstract data type), FOS: Medical engineering, Motor control, Health Sciences, Machine learning, REGULARITY, Biology, COMPLEXITY, Gait Analysis and Fall Prevention in Elderly, Sensorimotor Learning, POSTURAL CONTROL, Computer science, Musculoskeletal Modeling, Operating system, Philosophy, Computational Principles of Motor Control and Learning, MOTOR COORDINATION, PATTERNS, GAIT, sensorimotor control, Software, Neuroscience

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    38
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
38
Top 10%
Top 10%
Top 10%
Green
gold