
arXiv: 2502.16724
This paper investigates the understudied practice of weight sharing (WS) in variational graph autoencoders (VGAE). WS presents both benefits and drawbacks for VGAE model design and node embedding learning, leaving its overall relevance unclear and the question of whether it should be adopted unresolved. We rigorously analyze its implications and, through extensive experiments on a wide range of graphs and VGAE variants, demonstrate that the benefits of WS consistently outweigh its drawbacks. Based on our findings, we recommend WS as an effective approach to optimize, regularize, and simplify VGAE models without significant performance loss.
2025 ACM Web Conference (WWW 2025)
Social and Information Networks (cs.SI), FOS: Computer and information sciences, Computer Science - Machine Learning, Computer Science - Social and Information Networks, Machine Learning (cs.LG)
Social and Information Networks (cs.SI), FOS: Computer and information sciences, Computer Science - Machine Learning, Computer Science - Social and Information Networks, Machine Learning (cs.LG)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
