Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2020
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Learning to Recognize Chest-Xray Images Faster and More Efficiently Based on Multi-Kernel Depthwise Convolution

Authors: Mengjie Hu; Hezheng Lin; Zimeng Fan; Wenjie Gao; Lu Yang; Chun Liu; Qing Song;

Learning to Recognize Chest-Xray Images Faster and More Efficiently Based on Multi-Kernel Depthwise Convolution

Abstract

The development of convolutional neural networks has promoted the progress of computer-aided diagnostic systems. Details in medical image, such as the texture and tissue structure, are crucial features for diagnosis. Therefore, large input images combined with deep convolution neural networks are adopted to boost the performance in recent research of chest X-ray diagnosis. Meanwhile, due to the variable sizes of thoracic diseases, many researchers have worked to introduce additional module to capture multi-scale feature of images in CNN. However, these efforts hardly consider the computational costs of large inputs and introduced additional modules. This paper aims to automatically diagnose diseases on chest X-rays images quickly and effectively. We propose the multi-kernel depthwise convolution(MD-Conv) which contains depthwise convolution kernels with different filter sizes in one depthwise convolution layer. MD-Conv has high calculation efficiency and few parameters. Because its ability to learn multi-scale feature based on the multi-size kernels, it is appropriate for medical images diagnosis tasks in which abnormalities varied in sizes. In addition, larger depthwise convolution kernels are adopted in MD-Conv to obtain a larger receptive field efficiently, which can ensure sufficient receptive field for high resolution inputs. MD-Conv can be easily applied in modern lightweight networks to replace the normal depthwise convolution layer. We conduct experiments on the Chest X-ray 14 Dataset, which is the largest available chest x-ray dataset, and obtain competitive results. We also evaluate the MD-Conv on the new released dataset for pediatric pneumonia diagnosis. We obtain a better performance of 98.3% AUC than original paper (96.8%) for recognize pneumonia versus normal. Meanwhile we compare the FLOPs and Params of different models to show their efficiency for chest X-rays recognition.

Related Organizations
Keywords

Chest x-ray recognition, multi-kernels depthwise convolution, Electrical engineering. Electronics. Nuclear engineering, lightweight networks, TK1-9971

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    36
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
36
Top 10%
Top 10%
Top 10%
gold