Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Analytical Biochemis...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Analytical Biochemistry
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Gene selection using hybrid dragonfly black hole algorithm: A case study on RNA-seq COVID-19 data

Authors: Elnaz Pashaei; Elham Pashaei;

Gene selection using hybrid dragonfly black hole algorithm: A case study on RNA-seq COVID-19 data

Abstract

This paper introduces a new hybrid approach (DBH) for solving gene selection problem that incorporates the strengths of two existing metaheuristics: binary dragonfly algorithm (BDF) and binary black hole algorithm (BBHA). This hybridization aims to identify a limited and stable set of discriminative genes without sacrificing classification accuracy, whereas most current methods have encountered challenges in extracting disease-related information from a vast amount of redundant genes. The proposed approach first applies the minimum redundancy maximum relevancy (MRMR) filter method to reduce the dimensionality of feature space and then utilizes the suggested hybrid DBH algorithm to determine a smaller set of significant genes. The proposed approach was evaluated on eight benchmark gene expression datasets, and then, was compared against the latest state-of-art techniques to demonstrate algorithm efficiency. The comparative study shows that the proposed approach achieves a significant improvement as compared with existing methods in terms of classification accuracy and the number of selected genes. Moreover, the performance of the suggested method was examined on real RNA-Seq coronavirus-related gene expression data of asthmatic patients for selecting the most significant genes in order to improve the discriminative accuracy of angiotensin-converting enzyme 2 (ACE2). ACE2, as a coronavirus receptor, is a biomarker that helps to classify infected patients from uninfected in order to identify subgroups at risk for COVID-19. The result denotes that the suggested MRMR-DBH approach represents a very promising framework for finding a new combination of most discriminative genes with high classification accuracy.

Keywords

Support Vector Machine, Sequence Analysis, RNA, Gene Expression Profiling, Neoplasms, COVID-19, Humans, Angiotensin-Converting Enzyme 2, Microarray Analysis, Algorithms

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    39
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
39
Top 10%
Top 10%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!