Downloads provided by UsageCounts
ABSTRACT Cryptographic applications are becoming increasingly more important in today’s world of data exchange, big volumes of data need to be transferred safely from one location to another at high speed. In this paper, the parallel implementation of blowfish cryptography algorithm is evaluated and compared in terms of running time, speed up and parallel efficiency. The parallel implementation of blowfish is implemented using message passing interface (MPI) library, and the results have been conducted using IMAN1 Supercomputer. The experimental results show that the runtime of blowfish algorithm is decreased as the number of processors is increased. Moreover, when the number of processors is 2, 4, and 8, parallel efficiency achieves up to 99%, 98%, and 66%, respectively.
Blowfish, Encryption, MPI, Supercomputer
Blowfish, Encryption, MPI, Supercomputer
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 11 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
| views | 6 | |
| downloads | 8 |

Views provided by UsageCounts
Downloads provided by UsageCounts