
Sparse random linear network coding (SRLNC) is a promising solution for reducing the complexity of random linear network coding (RLNC). RLNC can be modeled as a linear operator channel (LOC). It is well known that the normalized channel capacity of LOC is characterized by the rank distribution of the transfer matrix. In this paper, we study the rank distribution of SRLNC. By exploiting the definition of linear dependence of the vectors, we first derive a novel approximation to the probability of a sparse random matrix being non-full rank. By using the Gauss coefficient, we then provide a closed approximation to the rank distribution of a sparse random matrix over a finite field. The simulation and numerical results show that our proposed approximation to the rank distribution of sparse matrices is very tight and outperforms the state-of-the-art results, except for the finite field size and the number of input packets are small, and the sparsity of the matrices is large.
sparse matrices, Electrical engineering. Electronics. Nuclear engineering, sparse random linear network coding, Rank distribution, TK1-9971
sparse matrices, Electrical engineering. Electronics. Nuclear engineering, sparse random linear network coding, Rank distribution, TK1-9971
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
