Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2025
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Sublinear-Time Algorithms for Diagonally Dominant Systems and Applications to the Friedkin-Johnsen Model

Authors: Feng, Weiming; Li, Zelin; Peng, Pan;

Sublinear-Time Algorithms for Diagonally Dominant Systems and Applications to the Friedkin-Johnsen Model

Abstract

We study sublinear-time algorithms for solving linear systems $Sz = b$, where $S$ is a diagonally dominant matrix, i.e., $|S_{ii}| \geq δ+ \sum_{j \ne i} |S_{ij}|$ for all $i \in [n]$, for some $δ\geq 0$. We present randomized algorithms that, for any $u \in [n]$, return an estimate $z_u$ of $z^*_u$ with additive error $\varepsilon$ or $\varepsilon \lVert z^*\rVert_\infty$, where $z^*$ is some solution to $Sz^* = b$, and the algorithm only needs to read a small portion of the input $S$ and $b$. For example, when the additive error is $\varepsilon$ and assuming $δ>0$, we give an algorithm that runs in time $O\left( \frac{\|b\|_\infty^2 S_{\max}}{δ^3 \varepsilon^2} \log \frac{\| b \|_\infty}{δ\varepsilon} \right)$, where $S_{\max} = \max_{i \in [n]} |S_{ii}|$. We also prove a matching lower bound, showing that the linear dependence on $S_{\max}$ is optimal. Unlike previous sublinear-time algorithms, which apply only to symmetric diagonally dominant matrices with non-negative diagonal entries, our algorithm works for general strictly diagonally dominant matrices ($δ> 0$) and a broader class of non-strictly diagonally dominant matrices $(δ= 0)$. Our approach is based on analyzing a simple probabilistic recurrence satisfied by the solution. As an application, we obtain an improved sublinear-time algorithm for opinion estimation in the Friedkin--Johnsen model.

Keywords

Machine Learning, Social and Information Networks (cs.SI), FOS: Computer and information sciences, Data Structures and Algorithms, Data Structures and Algorithms (cs.DS), Social and Information Networks, Machine Learning (cs.LG)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green