
Cyber-physical systems (CPSs) in autonomous vehicles must handle highly dynamic and uncertain settings, where unanticipated impediments, shifting traffic conditions, and environmental changes all provide substantial decision-making issues. Deep reinforcement learning (DRL) has emerged as a strong tool for dealing with such uncertainty, yet current DRL models struggle to ensure safety and optimal behaviour in indeterminate settings due to the difficulties of understanding dynamic reward systems. To address these constraints, this study incorporates double deep Q networks (DDQN) to improve the agent’s adaptability under uncertain driving conditions. A structured reward system is established to accommodate real-time fluctuations, resulting in safer and more efficient decision-making. The study acknowledges the technological limitations of automobile CPSs and investigates hardware acceleration as a potential remedy in addition to algorithmic enhancements. Because of their post-manufacturing adaptability, parallel processing capabilities, and reconfigurability, field programmable gate arrays (FPGAs) are used to execute reinforcement learning in real-time. Using essential parameters, including collision rate, behaviour similarity, travel distance, speed control, total rewards, and timesteps, the suggested method is thoroughly tested in the TORCS Racing Simulator. The findings show that combining FPGA-based hardware acceleration with DDQN successfully improves computational efficiency and decision-making reliability, tackling significant issues brought on by uncertainty in autonomous driving CPSs. In addition to advancing reinforcement learning applications in CPSs, this work opens up possibilities for future investigations into real-world generalisation, adaptive reward mechanisms, and scalable hardware implementations to further reduce uncertainty in autonomous systems.
Embedded technology, Deep Q networks, Algorithms and Analysis of Algorithms, Cyber-physical systems, Electronic computers. Computer science, Reinforcement learning, Autonomous vehicles, QA75.5-76.95
Embedded technology, Deep Q networks, Algorithms and Analysis of Algorithms, Cyber-physical systems, Electronic computers. Computer science, Reinforcement learning, Autonomous vehicles, QA75.5-76.95
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
