Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PeerJ Computer Scien...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PeerJ Computer Science
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PeerJ Computer Science
Article . 2025
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Integrating cyber-physical systems with embedding technology for controlling autonomous vehicle driving

Authors: Manal Abdullah Alohali; Hamed Alqahtani; Abdulbasit Darem; Monir Abdullah; Yunyoung Nam; Mohamed Abouhawwash;

Integrating cyber-physical systems with embedding technology for controlling autonomous vehicle driving

Abstract

Cyber-physical systems (CPSs) in autonomous vehicles must handle highly dynamic and uncertain settings, where unanticipated impediments, shifting traffic conditions, and environmental changes all provide substantial decision-making issues. Deep reinforcement learning (DRL) has emerged as a strong tool for dealing with such uncertainty, yet current DRL models struggle to ensure safety and optimal behaviour in indeterminate settings due to the difficulties of understanding dynamic reward systems. To address these constraints, this study incorporates double deep Q networks (DDQN) to improve the agent’s adaptability under uncertain driving conditions. A structured reward system is established to accommodate real-time fluctuations, resulting in safer and more efficient decision-making. The study acknowledges the technological limitations of automobile CPSs and investigates hardware acceleration as a potential remedy in addition to algorithmic enhancements. Because of their post-manufacturing adaptability, parallel processing capabilities, and reconfigurability, field programmable gate arrays (FPGAs) are used to execute reinforcement learning in real-time. Using essential parameters, including collision rate, behaviour similarity, travel distance, speed control, total rewards, and timesteps, the suggested method is thoroughly tested in the TORCS Racing Simulator. The findings show that combining FPGA-based hardware acceleration with DDQN successfully improves computational efficiency and decision-making reliability, tackling significant issues brought on by uncertainty in autonomous driving CPSs. In addition to advancing reinforcement learning applications in CPSs, this work opens up possibilities for future investigations into real-world generalisation, adaptive reward mechanisms, and scalable hardware implementations to further reduce uncertainty in autonomous systems.

Keywords

Embedded technology, Deep Q networks, Algorithms and Analysis of Algorithms, Cyber-physical systems, Electronic computers. Computer science, Reinforcement learning, Autonomous vehicles, QA75.5-76.95

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
gold