
handle: 10281/552841 , 10807/314400
Causal Discovery (CD) identifies cause-and-effect relationships from data using statistical learning. Several CD algorithms have been proposed relying on different assumptions, e.g. about the statistical relations among variables. However, which assumptions actually hold for a specific case study is not known a priori. Given a dataset obtained by sampling the joint distribution of all variables of a generative causal model, in general each algorithm could reconstruct a different Direct Acyclic Graph (DAG): some will be closer to the ground truth (GT) DAG than others, depending also on the applicability of the respective assumptions to the case study. As a consequence, given a collection of heterogeneous case studies, a hypothetical GT-aware oracle, able to select the best DAG out of the set of reconstructed DAGs, will outclass the average performance of the individual algorithms of the ensemble. In this work, we propose a supervised approach, relying on multilabel classification, to select the DAGs closest to GT by only comparing the topologies of the reconstructed DAGs. We carried out the study on a wide synthetic data set of causal models, sampling DAG topologies up to ten vertices, and using a representative set of linear and non-linear statistical dependencies. Whereas the best individual CD algorithm yields, on average, a distance from GT three times larger than the oracle, our algorithm features an average distance from GT only about 10% larger than the oracle.
Multi-label classifcation, causal discovery; D-separation based distance; ensemble approach; model selection; multi-label classification; structural hamming distance; structural intervention distance;, Causal Discovery, Structural Hamming Distance, Model selection, D-separation based Distance, Ensemble approach, Structural Intervention Distance
Multi-label classifcation, causal discovery; D-separation based distance; ensemble approach; model selection; multi-label classification; structural hamming distance; structural intervention distance;, Causal Discovery, Structural Hamming Distance, Model selection, D-separation based Distance, Ensemble approach, Structural Intervention Distance
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
