Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Pattern Recognition ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Pattern Recognition Letters
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Robust clustering algorithm: The use of soft trimming approach

Authors: Sona Taheri; Adil M. Bagirov; Nargiz Sultanova; Burak Ordin;

Robust clustering algorithm: The use of soft trimming approach

Abstract

The presence of noise or outliers in data sets may heavily affect the performance of clustering algorithms and lead to unsatisfactory results. The majority of conventional clustering algorithms are sensitive to noise and outliers. Robust clustering algorithms often overcome difficulties associated with noise and outliers and find true cluster structures. We introduce a soft trimming approach for the hard clustering problem where its objective is modeled as a sum of the cluster function and a function represented as a composition of the algebraic and distance functions. We utilize the composite function to estimate the degree of the significance of each data point in clustering. A robust clustering algorithm based on the new model and a procedure for generating starting cluster centers is developed. We demonstrate the performance of the proposed algorithm using some synthetic and real-world data sets containing noise and outliers. We also compare its performance with that of some well-known clustering techniques. Results show that the new algorithm is robust to noise and outliers and finds true cluster structures.

The research by Dr. Adil M. Bagirov is supported by the Australian Government through the Australian Research Council's Discovery Projects funding scheme (Project No. DP190100580) . The authors express their gratitude to three anonymous referees for their invaluable comments, which have contributed to enhancing the quality of the paper.

Australian Government through the Australian Research Council's Discovery Projects funding scheme [DP190100580]

Keywords

Partitional Clustering, Robust Clustering, Incremental Clustering, Trimming Approach

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average
Green
hybrid