Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Российский технологи...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Studying the influence of correction codes on coherent reception of M-PSK signals in the presence of noise and harmonic interference

Authors: V. D. Nguyen;

Studying the influence of correction codes on coherent reception of M-PSK signals in the presence of noise and harmonic interference

Abstract

Objectives. Signals with multiple phase shift keying (M-PSK) exhibiting good spectral and energy characteristics are successfully used in many information transmission systems. These include satellite communication systems, GPS, GLONASS, DVB/DVB-S2, and a set of IEEE 802.11 wireless communication standards. In radio communication channels, the useful signal is affected by various interferences in addition to noise. One of these is harmonic interference. As a result, high intensity harmonic interference practically destroys the reception of M-PSK signals. One of the important requirements for the quality of data transmission is the system error tolerance. There are different ways of improving the quality of information transmission. One of these is the use of corrective encoding technology. The aim of the paper is to assess the noise immunity of a coherent demodulator of M-PSK signals using Hamming codes (7,4) and (15,11), and convolutional encoding with Viterbi decoding algorithm (7,5) when receiving M-PSK signals under noise and harmonic interference in the communication channel.Methods. The methods of statistical radio engineering, optimal signal reception theory and computer simulation modeling were used.Results. Experimental dependencies of the bit error rate on the signal-to-noise ratio and on the intensity of harmonic interference of coherent reception of M-PSK signals in a channel with noise and harmonic interference were obtained using computer simulation modeling. This was done without using correction codes and with Hamming code (7.4) and (15.11) and convolutional encoding with Viterbi decoding algorithm (7,5).Conclusions. It is shown that the application of the correction codes effectively corrects errors in the presence of noise and harmonic interference with lower intensity. The correction is ineffective in the presence of high intensity interference. These results can provide important guidance in designing the reliable and energy efficient system.

Related Organizations
Keywords

Information theory, hamming code, harmonic interference, convolutional encoding, multiple phase shift keying, Q350-390, viterbi decoding algorithm, correction codes, noise immunity, bit error rate

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold