
Abstract Assay interference caused by small organic compounds continues to pose formidable challenges to early drug discovery. Various computational methods have been developed to identify compounds likely to cause assay interference. However, due to the scarcity of data available for model development, the predictive accuracy and applicability of these approaches are limited. In this work, we present E-GuARD, a novel framework seeking to address data scarcity and imbalance by integrating self-distillation, active learning, and expert-guided molecular generation. E-GuARD iteratively enriches the training data with interference-relevant molecules, resulting in quantitative structure-interference relationship (QSIR) models with superior performance. We demonstrate the utility of E-GuARD with the examples of four high-quality data sets on thiol reactivity, redox reactivity, nanoluciferase inhibition, and firefly luciferase inhibition. Our models reached MCC values of up to 0.47 for these data sets, with two-fold or higher improvements in enrichment factors compared to models trained without E-GuARD data augmentation. These results highlight the potential of E-GuARD as a scalable solution to mitigating assay interference in early drug discovery. Scientific contribution We present E-GuARD, an innovative framework that combines iterative self-distillation with guided molecular augmentation to enhance the predictive performance of QSAR models. By allowing models to learn from newly generated, informative compounds through iterations, E-GuARD facilitates the understanding of underrepresented structural patterns and improves performance on unseen data. When applied across different interference mechanisms, E-GuARD consistently outperformed standard approaches. E-GuARD establishes the foundation for further research into dynamic data enrichment and more robust molecular modeling.
Chemistry, 102019 Machine Learning, 102001 Artificial intelligence, Research, 102001 Artificial Intelligence, Information technology, 102019 Machine learning, T58.5-58.64, 301207 Pharmazeutische Chemie, QD1-999, 301207 Pharmaceutical chemistry
Chemistry, 102019 Machine Learning, 102001 Artificial intelligence, Research, 102001 Artificial Intelligence, Information technology, 102019 Machine learning, T58.5-58.64, 301207 Pharmazeutische Chemie, QD1-999, 301207 Pharmaceutical chemistry
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
