Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IET Intelligent Tran...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IET Intelligent Transport Systems
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IET Intelligent Transport Systems
Article . 2024
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Freeway congestion management on multiple consecutive bottlenecks with RL‐based headway control of autonomous vehicles

Authors: Lina Elmorshedy; Ilia Smirnov; Baher Abdulhai;

Freeway congestion management on multiple consecutive bottlenecks with RL‐based headway control of autonomous vehicles

Abstract

AbstractAdaptive cruise control (ACC) is the core building block of future full autonomous driving. Numerous recent research demonstrated that Autonomous Vehicles (AVs) adopting shorter headways generally increase road capacity and may relieve congestion at bottlenecks for moderate demand scenarios. However, with high demand scenarios, bottlenecks can still be activated causing capacity breakdown. Therefore, extra control measures as dynamic traffic control near bottlenecks is necessary. The challenge is harder on urban freeways with consecutive bottlenecks which affect each other. This paper aims to improve the performance of ACC systems in a high demand scenario. A multi‐bottleneck dynamic headway control strategy based on deep reinforcement learning (DRL) that adapts headways to optimize traffic flow and minimize delay is proposed. The controller dynamically assigns an optimal headway for each controlled section, based on state measurement representing the current traffic conditions. The case study is a freeway stretch with three consecutive bottlenecks which is then extended to include eight bottlenecks. Three different RL agent configurations are presented and compared. It is quantitatively demonstrated that the proposed control strategy improves traffic and enhances the system delay by up to 22.30%, and 18.87% compared to shortest headway setting for the three‐bottleneck and the eight‐bottleneck networks, respectively.

Related Organizations
Keywords

Transportation engineering, traffic control, TA1001-1280, automated driving and intelligent vehicles, Electronic computers. Computer science, QA75.5-76.95, artificial intelligence

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold