Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Pamukkale University...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Microbiological Methods
Article . 2013 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 7 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Fourier transform infrared spectral evaluation for the differentiation of clinically relevant Trichophyton species

Authors: Çağrı, Ergin; Macit, İlkit; Yaşar, Gök; Mustafa Zafer, Özel; Ahmet Hilmi, Çon; Nilgün, Kabay; Sevil, Söyleyici; +1 Authors

Fourier transform infrared spectral evaluation for the differentiation of clinically relevant Trichophyton species

Abstract

Routine mold identification methods have been established to provide actual data to facilitate reliable diagnoses in clinical laboratories, as well as the management of infection and health practice planning, particularly for dermatophytes. Some species of the Trichophyton genera, particularly T. rubrum and T. mentagrophytes complexes, exhibit more complexity in species recognition. In this study, the intriguing technique of Fourier-transform infrared (FT-IR) spectroscopy is evaluated for species recognition of Trichophyton spp. A total of 32 reference isolates, belonging to T. mentagrophytes (n=7), T. rubrum (n=21) complexes and Arthroderma spp. (n=4), were included in the study. Numerous spectral window FTIR spectroscopy data were analyzed by principal component analysis and hierarchical clustering was performed. There were not any spectral ranges presenting clusters at the main Trichophyton species (e.g. T. rubrum, T. mentagrophytes and Arthroderma spp.). Notably, only T. violaceum (including T. yaoundei and T. soudanense) was clustered in several ranges. In intra-species evaluation, T. erinacei, belonging to the T. mentagrophytes complex, was distinguishable by FT-IR spectroscopy with different spectral range calculations. We suggested that further research with several reference and clinical isolates of Trichophyton species will be crucial to accurately identify intra-species of T. rubrum and T. mentagrophytes complexes.

Keywords

Microbiological Techniques, Dermatophytes, species identification, 610, Trichophyton rubrum, Mycology, Trichophyton mentagrophytes, trichophyton megninii, trichophyton quinckeanum, Tinea, Trichophyton, Trichophyton yaoundei, Trichophyton violaceum, Spectroscopy, Fourier Transform Infrared, Trichophyton raubitschekii, Humans, controlled study, trichophyton soudanense, infrared spectroscopy, Spectroscopy, Arthroderma simii, nonhuman, Arthroderma, Fourier Transform Infrared Spectroscopy, Trichophyton fischeri, Arthrodermataceae, species differentiation, article, Humans; Microbiological Techniques/*methods; Mycology/*methods; Spectroscopy, Fourier Transform Infrared/*methods; Tinea/*diagnosis/*microbiology; Trichophyton/*chemistry/*classification, Trichophyton fluvimunionse, priority journal, Trichophyton kuryangei, Fourier Transform Infrared, Arthroderma benhamiae, Trichophyton soudanense, arthroderma benhamiae, arthroderma vanbreuseghemii, Trichophyton erinacei, Trichophyton kanei

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Top 10%
Top 10%
Top 10%
Green