Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1145/370332...
Article . 2024 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2025
License: CC BY
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Static Program Analysis Guided LLM Based Unit Test Generation

Authors: Sujoy Roy Chowdhury; Giriprasad Sridhara; A K Raghavan; Joy Bose; Sourav Mazumdar; Hamender Singh; Srinivasan Bajji Sugumaran; +1 Authors

Static Program Analysis Guided LLM Based Unit Test Generation

Abstract

We describe a novel approach to automating unit test generation for Java methods using large language models (LLMs). Existing LLM-based approaches rely on sample usage(s) of the method to test (focal method) and/or provide the entire class of the focal method as input prompt and context. The former approach is often not viable due to the lack of sample usages, especially for newly written focal methods. The latter approach does not scale well enough; the bigger the complexity of the focal method and larger associated class, the harder it is to produce adequate test code (due to factors such as exceeding the prompt and context lengths of the underlying LLM). We show that augmenting prompts with \emph{concise} and \emph{precise} context information obtained by program analysis %of the focal method increases the effectiveness of generating unit test code through LLMs. We validate our approach on a large commercial Java project and a popular open-source Java project.

Keywords

Software Engineering (cs.SE), FOS: Computer and information sciences, Computer Science - Software Engineering, Artificial Intelligence (cs.AI), Computer Science - Artificial Intelligence

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Top 10%
Average
Average
Green