Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.1...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1038/s41598...
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2023
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doaj.org/article/8b653...
Article . 2023
Data sources: DOAJ
https://dx.doi.org/10.60692/91...
Other literature type . 2023
Data sources: Datacite
https://dx.doi.org/10.60692/gy...
Other literature type . 2023
Data sources: Datacite
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Maximizing reusability of learning objects through machine learning techniques

تعظيم إعادة استخدام كائنات التعلم من خلال تقنيات التعلم الآلي
Authors: Meryem Amane; Mounir Gouiouez; Mohammed Berrada;

Maximizing reusability of learning objects through machine learning techniques

Abstract

AbstractMaximizing the reusability of learning objects through machine learning techniques has significantly transformed the landscape of e-learning systems. This progress has fostered authentic resource sharing and expanded opportunities for learners to explore these materials with ease. Consequently, a pressing need arises for an efficient categorization system to organize these learning objects effectively. This study consists of two primary phases. Firstly, we extract metadata from learning objects using web exploration algorithms, specifically employing feature selection techniques to identify the most relevant features while eliminating redundant ones. This step drastically reduces the dataset’s dimensionality, enabling the creation of practical and useful models. In the second phase, we employ machine learning algorithms to categorize learning objects based on their specific forms of similarity. These algorithms are adept at accurately classifying objects by measuring their similarity using Euclidean distance metrics. To evaluate the effectiveness of learning objects through machine learning techniques, a series of experimental studies were conducted using a real-world dataset. The results of this study demonstrate that the proposed machine learning approach surpasses traditional methods, yielding promising and efficient outcomes for enhancing learning object reusability.

Related Organizations
Keywords

Structuring, Artificial intelligence, Economics, Science, Semi-Supervised Learning, Article, Learning with Noisy Labels in Machine Learning, Task (project management), Artificial Intelligence, Meta-Learning, Machine learning, Image (mathematics), Similarity (geometry), Active Learning in Machine Learning Research, Adaptation to Concept Drift in Data Streams, Ensemble Learning, Reusability, Curse of dimensionality, Metadata, Instance-based learning, Q, R, Active learning (machine learning), Computer science, Management, Programming language, Meta learning (computer science), World Wide Web, Online Learning, Categorization, Computer Science, Physical Sciences, Medicine, Learning object, Software, Finance, Robust Learning

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Top 10%
Average
Green
hybrid
Related to Research communities