Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Mobile Computing
Article . 2025 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2025
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Cooperative UAV-Mounted RISs-Assisted Energy-Efficient Communications

Authors: Hongyang Pan; Yanheng Liu; Geng Sun; Qingqing Wu; Tierui Gong; Pengfei Wang; Dusit Niyato; +1 Authors

Cooperative UAV-Mounted RISs-Assisted Energy-Efficient Communications

Abstract

Cooperative reconfigurable intelligent surfaces (RISs) are promising technologies for 6G networks to support a great number of users. Compared with the fixed RISs, the properly deployed RISs may improve the communication performance with less communication energy consumption, thereby improving the energy efficiency. In this paper, we consider a cooperative unmanned aerial vehicle-mounted RISs (UAV-RISs)-assisted cellular network, where multiple RISs are carried and enhanced by UAVs to serve multiple ground users (GUs) simultaneously such that achieving the three-dimensional (3D) mobility and opportunistic deployment. Specifically, we formulate an energy-efficient communication problem based on multi-objective optimization framework (EEComm-MOF) to jointly consider the beamforming vector of base station (BS), the location deployment and the discrete phase shifts of UAV-RIS system so as to simultaneously maximize the minimum available rate over all GUs, maximize the total available rate of all GUs, and minimize the total energy consumption of the system, while the transmit power constraint of BS is considered. To comprehensively solve EEComm-MOF which is an NP-hard and non-convex problem with constraints, a non-dominated sorting genetic algorithm-II with a continuous solution processing mechanism, a discrete solution processing mechanism, and a complex solution processing mechanism (INSGA-II-CDC) is proposed. Simulations results demonstrate that the proposed INSGA-II-CDC can solve EEComm-MOF effectively and outperforms other benchmarks under different parameter settings. Moreover, the stability of INSGA-II-CDC and the effectiveness of the improved mechanisms are verified. Finally, the implementability analysis of the algorithm is given.

Related Organizations
Keywords

Signal Processing (eess.SP), Signal Processing, FOS: Electrical engineering, electronic engineering, information engineering

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Top 10%
Average
Average
Green