
AbstractThis paper presents an FPGA architecture for objects classification based on Adaptive Boosting algorithm. The ar-chitecture uses the color and texture features as input attributes to discriminate the objects in a scene. Moreover, the architecture design takes into account the requirements of real-time processing. To this end, it was optimized for reusing the texture feature modules, giving, in this way, a more complete model for each object and becoming easier the object-discrimination process. The reuses technique allows to increase the information of the object model without decrease the performance or drastically increase the area used on the FPGA. The architecture classifies 30 dense images per second of size 640 × 480 pixels. Both, classification architec ture and optimization technique, are described and compared with others architectures founded in the literature. The conclusions and perspectives are given at the end of this document.
Texture and Color Features, Adaptive Boosting Algorithm, Real-Time Systems, FPGA Architecture
Texture and Color Features, Adaptive Boosting Algorithm, Real-Time Systems, FPGA Architecture
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
