
This paper presents novel discrete differential operators for periodic functions of one- and two-variables, which relate the values of the derivatives to the values of the function itself for a set of arbitrarily chosen points over the function’s area. It is very characteristic, that the values of the derivatives at each point depend on the function values at all points in that area. Such operators allow one to easily create finite-difference equations for boundaryvalue problems. The operators are addressed especially to nonlinear differential equations.
finite-difference operators, arbitrary meshes, periodic functions, two-variable periodic functions, partial finite difference operators, Electrical engineering. Electronics. Nuclear engineering, TK1-9971
finite-difference operators, arbitrary meshes, periodic functions, two-variable periodic functions, partial finite difference operators, Electrical engineering. Electronics. Nuclear engineering, TK1-9971
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
