
Since the seminal PPAD-completeness result for computing a Nash equilibrium even in two-player games, an important line of research has focused on relaxations achievable in polynomial time. In this paper, we consider the notion of $\varepsilon$-well-supported Nash equilibrium, where $\varepsilon \in [0,1]$ corresponds to the approximation guarantee. Put simply, in an $\varepsilon$-well-supported equilibrium, every player chooses with positive probability actions that are within $\varepsilon$ of the maximum achievable payoff, against the other player's strategy. Ever since the initial approximation guarantee of 2/3 for well-supported equilibria, which was established more than a decade ago, the progress on this problem has been extremely slow and incremental. Notably, the small improvements to 0.6608, and finally to 0.6528, were achieved by algorithms of growing complexity. Our main result is a simple and intuitive algorithm, that improves the approximation guarantee to 1/2. Our algorithm is based on linear programming and in particular on exploiting suitably defined zero-sum games that arise from the payoff matrices of the two players. As a byproduct, we show how to achieve the same approximation guarantee in a query-efficient way.
FOS: Computer and information sciences, well-supported Nash equilibria, Computer Science - Computer Science and Game Theory, Analysis of algorithms and problem complexity, query complexity, bimatrix games, Nash equilibria, 2-person games, Computer Science and Game Theory (cs.GT)
FOS: Computer and information sciences, well-supported Nash equilibria, Computer Science - Computer Science and Game Theory, Analysis of algorithms and problem complexity, query complexity, bimatrix games, Nash equilibria, 2-person games, Computer Science and Game Theory (cs.GT)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
