
arXiv: 2301.11415
We consider infinite-horizon Markov Decision Processes where parameters, such as transition probabilities, are unknown and estimated from data. The popular distributionally robust approach to addressing the parameter uncertainty can sometimes be overly conservative. In this paper, we utilize the recently proposed formulation, Bayesian risk Markov Decision Process (BR-MDP), to address parameter (or epistemic) uncertainty in MDPs. To solve the infinite-horizon BR-MDP with a class of convex risk measures, we propose a computationally efficient approach called approximate bilevel difference convex programming (ABDCP). The optimization is performed offline and produces the optimal policy that is represented as a finite state controller with desirable performance guarantees. We also demonstrate the empirical performance of the BR-MDP formulation and the proposed algorithm.
FOS: Electrical engineering, electronic engineering, information engineering, Systems and Control (eess.SY), Electrical Engineering and Systems Science - Systems and Control
FOS: Electrical engineering, electronic engineering, information engineering, Systems and Control (eess.SY), Electrical Engineering and Systems Science - Systems and Control
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
