
A technique for computer simulation of three-dimensional structures of materials with reinforcing particles of complex irregular shapes observed in the experiments is proposed, which assumes scale invariance of the natural mechanical fragmentation. Two-phase structures of metal-matrix composites and coatings of different spatial scales are created, with the particles randomly distributed over the matrix and coating computational domains. Using the titanium carbide reinforcing particle embedded into the aluminum as an example, plastic strain localization and residual stress formation along the matrix-particle interface are numerically investigated during cooling followed by compression or tension of the composite. A detailed analysis is performed to evaluate the residual stress concentration in local regions of bulk tension formed under all-round and uniaxial compression of the composite due to the concave and convex interfacial asperities.
остаточные напряжения, металломатричные композиционные материалы, компьютерное моделирование, локализация деформации
остаточные напряжения, металломатричные композиционные материалы, компьютерное моделирование, локализация деформации
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 16 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
