Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ CAAI Transactions on...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
CAAI Transactions on Intelligence Technology
Article . 2024 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
DBLP
Article
Data sources: DBLP
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Optimisation of sparse deep autoencoders for dynamic network embedding

Authors: Huimei Tang; Yutao Zhang; Lijia Ma; Qiuzhen Lin; Liping Huang; Jianqiang Li 0001; Maoguo Gong;

Optimisation of sparse deep autoencoders for dynamic network embedding

Abstract

Abstract Network embedding (NE) tries to learn the potential properties of complex networks represented in a low‐dimensional feature space. However, the existing deep learning‐based NE methods are time‐consuming as they need to train a dense architecture for deep neural networks with extensive unknown weight parameters. A sparse deep autoencoder (called SPDNE) for dynamic NE is proposed, aiming to learn the network structures while preserving the node evolution with a low computational complexity. SPDNE tries to use an optimal sparse architecture to replace the fully connected architecture in the deep autoencoder while maintaining the performance of these models in the dynamic NE. Then, an adaptive simulated algorithm to find the optimal sparse architecture for the deep autoencoder is proposed. The performance of SPDNE over three dynamical NE models (i.e. sparse architecture‐based deep autoencoder method, DynGEM, and ElvDNE) is evaluated on three well‐known benchmark networks and five real‐world networks. The experimental results demonstrate that SPDNE can reduce about 70% of weight parameters of the architecture for the deep autoencoder during the training process while preserving the performance of these dynamical NE models. The results also show that SPDNE achieves the highest accuracy on 72 out of 96 edge prediction and network reconstruction tasks compared with the state‐of‐the‐art dynamical NE algorithms.

Related Organizations
Keywords

QA76.75-76.765, network embedding, Computational linguistics. Natural language processing, dynamic networks, low‐dimensional feature space, deep autoencoder, Computer software, P98-98.5, sparse structure

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold