Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Journal of Physi...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
CNR ExploRA
Article . 2012
Data sources: CNR ExploRA
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IRIS Cnr
Article . 2012
Data sources: IRIS Cnr
The Journal of Physical Chemistry A
Article . 2012 . Peer-reviewed
Data sources: Crossref
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

X-ray Spectroscopy of Heterocyclic Biochemicals: Xanthine, Hypoxanthine, and Caffeine

Authors: O Plekan; V Feyer; R Richter; A Moise; M Coreno; KC Prince; IL Zaytseva; +3 Authors

X-ray Spectroscopy of Heterocyclic Biochemicals: Xanthine, Hypoxanthine, and Caffeine

Abstract

The electronic structures of the purine derivatives xanthine, hypoxanthine and caffeine have been investigated in the gas phase using C, N, and O 1s X-ray photoemission (XPS) and near edge X-ray absorption fine structure (NEXAFS) spectroscopy. The results have been interpreted by means of ab initio calculations using the third-order algebraic-diagrammatic construction (ADC(3)) method for the one-particle Green's function and the second-order ADC method (ADC(2)) for the polarization propagator. The carbon, nitrogen and oxygen K-edge NEXAFS spectra of xanthine and caffeine are very similar, since the molecules differ only by substitution of three hydrogen atoms by methyl groups. For hypoxanthine, the electronic structure and spectra differ considerably from xanthine as the purine ring is more highly conjugated, and there is one less oxo group. Effects due to oxo-hydroxy tautomerism were not observed. However, the two oxo tautomeric forms of hypoxanthine oxo-N(9)-H and oxo-N(7)-H are populated in the gas phase, and the C 1s spectra can be simulated only by taking account of these two tautomers, with appropriate Boltzmann population ratios which we have also calculated. For xanthine and caffeine, single tautomeric forms were observed.

Keywords

info:eu-repo/classification/ddc/540, Nitrogen, Carbon: chemistry, Xanthine, Nitrogen: chemistry, Caffeine, EXCITATION-SPECTRA, Spectrometry, X-Ray Emission: methods, Oxygen: chemistry, Xanthine: chemistry, Hypoxanthine, Molecular Structure, Caffeine: chemistry, CORE-LEVEL, Spectrometry, X-Ray Emission, Carbon, J, MOLECULAR-ORBITAL METHODS, Oxygen, ELECTRONIC-STRUCTURE, PHOTOELECTRON-SPECTRA, X-Ray Absorption Spectroscopy, Models, Chemical, Quantum Theory, Gases, Hypoxanthine: chemistry, X-Ray Absorption Spectroscopy: methods

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    33
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
33
Top 10%
Top 10%
Top 10%
bronze