Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Zurich Open Reposito...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Time Series Analysis
Article . 2024 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2025
Data sources: zbMATH Open
https://dx.doi.org/10.5167/uzh...
Other literature type . 2025
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Risk parity portfolio optimization under heavy‐tailed returns and dynamic correlations

Risk parity portfolio optimization under heavy-tailed returns and dynamic correlations
Authors: Paolella, Marc S; Polak, Pawel; Walker, Patrick S;

Risk parity portfolio optimization under heavy‐tailed returns and dynamic correlations

Abstract

Risk parity portfolio optimization, using expected shortfall as the risk measure, is investigated when asset returns are fat‐tailed and heteroscedastic with regime switching dynamic correlations. The conditional return distribution is modeled by an elliptical multi‐variate generalized hyperbolic distribution, allowing for fast parameter estimation via an expectation‐maximization algorithm, and a semi‐closed form of the risk contributions. A new method for efficient computation of non‐Gaussian risk parity weights sidesteps the need for numerical simulations or Cornish–Fisher‐type approximations. Accounting for fat‐tailed returns, the risk parity allocation is less sensitive to volatility shocks, thereby generating lower portfolio turnover, in particular during market turmoils such as the global financial crisis or the COVID shock. While risk parity portfolios are rather robust to the misuse of the Gaussian distribution, a sophisticated time series model can improve risk‐adjusted returns, strongly reduces drawdowns during periods of market stress and enables to use a holistic risk model for portfolio and risk management.

Related Organizations
Keywords

Applications of statistics to actuarial sciences and financial mathematics, GARCH, Estimation in multivariate analysis, Markov switching, 10003 Department of Finance, elliptical distributions, risk parity, 330 Economics, Time series, auto-correlation, regression, etc. in statistics (GARCH), 2604 Applied Mathematics, Inference from stochastic processes, Portfolio theory, multi-variate generalized hyperbolic distribution, 1804 Statistics, Probability and Uncertainty, 2613 Statistics and Probability, Statistical methods; risk measures

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green