Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IRIS UNIMORE - Archi...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Structural Geology
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Displacement analysis of basin-scale reactivated normal faults: Insights from the West Netherlands Basin

Authors: Annelotte Weert; Giovanni Camanni; Marco Mercuri; Kei Ogata; Francesco Vinci; Stefano Tavani;

Displacement analysis of basin-scale reactivated normal faults: Insights from the West Netherlands Basin

Abstract

Displacement-distance diagrams are valuable for studying fault interactions and growth. Examples of displacement patterns for faults that underwent multiple reactivation events are limited. This study presents along-strike and along-dip displacement-distance diagrams for nine basin-scale faults from the West Netherlands Basin, which has experienced multiple phases of displacement. The diagrams were derived from 3D seismic reflection data, covering 2300 km2 and 6 km in depth. Due to the dataset size, we developed a semi-automated workflow to map faults, reduce noise, and generate displacement-distance diagrams. To determine the effects of both multiphase rifting and transpressive basin inversion on fault growth, we studied four faults only recording extensional events and five faults that also experienced inversion. We observed distinctive along-dip displacement patterns, characterized by piecewise curves, identifying pre-, syn-, and post-rift phases of fault growth, as well for a later inversion event. The shape of lateral displacement patterns suggests quasi-fixed lateral fault tips throughout the fault’s history and faults developing their lateral lengths early, with later reactivation mainly increasing their vertical extent while accumulating displacement. In addition to improving our understanding of how faults grow through multiple reactivations, these results may provide insights into the growth-history of faults in other inverted rift basins world-wide.

Keywords

displacement-distance diagrams; fault reactivation; extensional tectonics; syn-kinematic sediments; basin inversion; fault linkage; fault growth, Basin inversion; Displacement-distance diagrams; Extensional tectonics; Fault growth; Fault linkage; Fault reactivation; Syn-kinematic sediments;, Basin inversion; Displacement-distance diagrams; Extensional tectonics; Fault growth; Fault linkage; Fault reactivation; Syn-kinematic sediments

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
hybrid