
arXiv: 2311.09017
Approximate message passing (AMP) is a family of iterative algorithms that generalize matrix power iteration. AMP algorithms are known to optimally solve many average-case optimization problems. In this paper, we show that a large class of AMP algorithms can be simulated in polynomial time by \emph{local statistics hierarchy} semidefinite programs (SDPs), even when an unknown principal minor of measure $1/\mathrm{polylog}(\mathrm{dimension})$ is adversarially corrupted. Ours are the first robust guarantees for many of these problems. Further, our results offer an interesting counterpoint to strong lower bounds against less constrained SDP relaxations for average-case max-cut-gain (a.k.a. "optimizing the Sherrington-Kirkpatrick Hamiltonian") and other problems.
50 pages
FOS: Computer and information sciences, Computer Science - Machine Learning, Statistics - Machine Learning, Computer Science - Data Structures and Algorithms, FOS: Mathematics, Mathematics - Statistics Theory, Data Structures and Algorithms (cs.DS), Machine Learning (stat.ML), Statistics Theory (math.ST), Machine Learning (cs.LG)
FOS: Computer and information sciences, Computer Science - Machine Learning, Statistics - Machine Learning, Computer Science - Data Structures and Algorithms, FOS: Mathematics, Mathematics - Statistics Theory, Data Structures and Algorithms (cs.DS), Machine Learning (stat.ML), Statistics Theory (math.ST), Machine Learning (cs.LG)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
