
arXiv: 2212.12953
Due to the limited availability of quantum computing power in the near future, cryptographic security techniques must be developed for secure remote use of current and future quantum computing hardware. Prominent among these is Universal Blind Quantum Computation (UBQC) and its variations such as Quantum Fully Homomorphic Encryption (QFHE), which herald interactive and remote secure quantum computing power becoming available to parties that require little more than the ability to prepare and measure single qubits. Here I present a simulation of such a protocol, tested classically on the simulation platform LIQ$Ui|\rangle$ and then later adapted to and run on the recently released IBM 16-qubit quantum chip using their beta cloud service. It demonstrates the functionality of the protocol and explores the effects of noise on potential physical systems that would be used to implement it. BSc Thesis from the University of Edinburgh, December 2017
27 pages, 14 figures
FOS: Computer and information sciences, Quantum Physics, Computer Science - Cryptography and Security, FOS: Physical sciences, Quantum Physics (quant-ph), Cryptography and Security (cs.CR)
FOS: Computer and information sciences, Quantum Physics, Computer Science - Cryptography and Security, FOS: Physical sciences, Quantum Physics (quant-ph), Cryptography and Security (cs.CR)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
