
Computationally Efficient SLAM (CESLAM) was proposed to improve the accuracy and runtime efficiency of FastSLAM 1.0 and FastSLAM 2.0. This method adopts the landmark measurement with the maximum likelihood, where the particle state is updated before updating the landmark estimate. Also, CESLAM solves the problem of real-time performance. In this paper, a modified version of CESLAM, called adaptive computation SLAM (ACSLAM), as an adaptive SLAM enhances the localization and mapping accuracy along with better runtime performance. In an empirical evaluation in a rich environment, we show that ACSLAM runs about twice as fast as FastSLAM 2.0 and increases the accuracy of the location estimate by a factor of two.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
