Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Вестник Самарского у...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

Influence of the design concept of an experimental demonstration model of a rocket design element on the process of heat and mass transfer

Authors: V. I. Trushlyakov; Yu. V. Surikova; D. Yu. Davydovich;

Influence of the design concept of an experimental demonstration model of a rocket design element on the process of heat and mass transfer

Abstract

A conceptual design of an experimental demonstration model of three-layer structure of a launch vehicle body is proposed, based on the replacement of aluminum honeycomb filler with an energy-related material, in particular, based on composite solid rocket propellants. When energy-related material is burned under vacuum conditions, pyrolysis occurs in the experimental demonstration model material, including thermal destruction of the experimental demonstration model material. The efficiency criterion for the heat and mass exchange process during the energy-related material combustion inside the experimental demonstrator and, accordingly, the design concept of the experimental demonstrator, is the skin temperature. After the thermal destruction process is completed in the experimental demonstrator pyrolysis process, in accordance with the proposed concept of creating the experimental demonstrator aerodynamic loading is carried out to assess the degree of dispersion of the experimental demonstrator. The conducted numerical experiments showed the fundamental possibility of significant influence of the design concept of the experimental demonstrator on the skin temperature and, accordingly, an increase in the degree of thermal destruction of the skin material and the possibility of dispersion of the experimental demonstrator under aerodynamic influence. Comparisons were made with the results of physical modeling of burning the experimental demonstrator with specific energy material, which were close to the results of numerical experiments.

Related Organizations
Keywords

experimental demonstrator, energy-related material, shell, design concept, TL1-4050, thermal destruction, combustion, Motor vehicles. Aeronautics. Astronautics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold