
How can we quantize large language models while preserving accuracy? Quantization is essential for deploying large language models (LLMs) efficiently. Binary-coding quantization (BCQ) and uniform quantization (UQ) are promising quantization schemes that have strong expressiveness and optimizability, respectively. However, neither scheme leverages both advantages. In this paper, we propose UniQuanF (Unified Quantization with Flexible Mapping), an accurate quantization method for LLMs. UniQuanF harnesses both strong expressiveness and optimizability by unifying the flexible mapping technique in UQ and non-uniform quantization levels of BCQ. We propose unified initialization, and local and periodic mapping techniques to optimize the parameters in UniQuanF precisely. After optimization, our unification theorem removes computational and memory overhead, allowing us to utilize the superior accuracy of UniQuanF without extra deployment costs induced by the unification. Experimental results demonstrate that UniQuanF outperforms existing UQ and BCQ methods, achieving up to 4.60% higher accuracy on GSM8K benchmark.
ACL 2025 Main Track
FOS: Computer and information sciences, I.2.7, 68T50, Computation and Language, Computation and Language (cs.CL)
FOS: Computer and information sciences, I.2.7, 68T50, Computation and Language, Computation and Language (cs.CL)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
