Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Science and Transpor...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

RESEARCH OF MOTION INTENSITY OF SPECIALIZED TRAIN TRAFFIC VOLUMES UNDER RISKS CONDITIONS

Authors: null M. I. Muzykin;

RESEARCH OF MOTION INTENSITY OF SPECIALIZED TRAIN TRAFFIC VOLUMES UNDER RISKS CONDITIONS

Abstract

Purpose. The study aims to establish a rational variant for running of specialized train traffic volumes by managing risks and determining the dependence of the train motion interval on locomotive fleet and locomotive crews. It is possible to achieve this purpose by establishing the sequence of stages of the genetic algorithm for implementing a mathematical model for determining the movement intensity of specialized train traffic volumes. Methodology. The study examined the process of passing specialized train traffic volumes along railway corridors as part of a single logistics chain. We approached this process from the perspective of risk management when it is necessary to determine the train arrival time from different directions with the existing technological restrictions. The choice of rational interval between the trains running along the railway corridors is extremely important, since it allows the passage of specialized freight traffic volumes more efficiently in terms of delivery costs to the destination and the speed of this delivery. In order to implement an optimization mathematical model for determining the motion intensity of specialized train traffic volumes in railway directions, a real-coded genetic algorithm (RGA) was used. Findings. The analysis proved the search efficiency of the rational option for establishing the motion intensity of specialized train traffic volumes, taking into account the railway costs for traction and the costs of consignees. A graph of the best and mean values of fitness function on the number of RGA iterations in the process of finding a solution is presented. Originality. As a result of the study, a software implementation of the mathematical model for determining the intensity of specialized train traffic volumes in the railway directions was developed taking into account the balance of rail costs for traction resources and the costs of consignee. This program allows you to simulate the choice of time of trains’ arrival to the final station of from different directions in the uncertainty conditions. An expert analysis of the obtained simulation results proved the adequacy of the solution. Practical value. This study allows us to establish the dependence of train motion interval on the locomotive fleet and locomotive crews. The search for the optimal interval of train traffic volumes using the developed mathematical model makes it possible to manage the associated risks and minimize operating costs on the specialized train traffic volumes.

Keywords

traction rolling stock, TA1001-1280, Transportation engineering, поездопоток; интенсивность движения; тяговый подвижной состав; риски; генетический алгоритм, genetic algorithm, поїздопотік; інтенсивність руху; тяговий рухомий склад; ризики; генетичний алгоритм, motion intensity, risks, train traffic volume, train traffic volume; motion intensity; traction rolling stock; risks; genetic algorithm

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 3
    download downloads 4
  • 3
    views
    4
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
3
4
gold