Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Future Generation Co...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Future Generation Computer Systems
Article . 2002 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
DBLP
Article
Data sources: DBLP
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

MPI–Delphi: an MPI implementation for visual programming environments and heterogeneous computing

Authors: Manuel E. Acacio; Óscar Cánovas Reverte; José M. García 0001; Pedro E. López-de-Teruel;

MPI–Delphi: an MPI implementation for visual programming environments and heterogeneous computing

Abstract

The goal of a parallel program is to reduce the execution time, compared to the fastest sequential program solving the same problem. Parallel programming is growing due to the widespread use of network of workstations (NOWs) or powerful PCs in high-performance computing. Because the hardware components are all commodity devices, NOWs are much more cost-effective than custom machines with similar technology. In this environment, the typical programming model used has been message-passing and the MPI library has become the standard in the distributed-memory computing model. On the other hand, visual programming environments try to simply the task of developing applications. They provide programmers with several standard components for creating programs. Delphi constitutes one of the most popular visual programming environments nowadays in the Windows market place. In this paper, we present MPI–Delphi, an implementation of MPI for writing parallel applications using Delphi visual programming environment. We show how MPI–Delphi has been developed, and how it makes possible to manage a cluster of homogeneous/heterogeneous PCs. Two examples of use of MPI–Delphi in a heterogeneous cluster of workstations with a mixture of Windows and Linux operating systems are also included. The MPI–Delphi interface is suitable for some specific kinds of problems, such as monitoring parallel programs of long execution time, or computationally intensive graphical simulations. In addition, MPI–Delphi has proven to be a good tool for research, as the development of new algorithms can be carried out quickly and, therefore, time spent on the debugging of such algorithms is reduced. Finally, we conclude by explaining some of the tasks we think MPI–Delphi is suitable for. © 2002 Elsevier Science B.V. All rights reserved.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Top 10%
Average
bronze