
In 2017, Garunkštis, Laurinčikas and Macaitienė proved the discrete universality theorem for the Riemann zeta-function shifted by imaginary parts of nontrivial zeros of the Riemann zeta-function. This discrete universality has been extended to various zeta-functions and L-functions. In this paper, we generalize this discrete universality for Matsumoto zeta-functions.
QA1-939, Matsumoto zeta-function, universality, nontrivial zeros, Other Dirichlet series and zeta functions, Mathematics
QA1-939, Matsumoto zeta-function, universality, nontrivial zeros, Other Dirichlet series and zeta functions, Mathematics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
