Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Culture-Based Particle Swarm Optimization Framework for Dynamic, Constrained Multi-Objective Optimization

Authors: Ashwin A. Kadkol; Gary G. Yen;

A Culture-Based Particle Swarm Optimization Framework for Dynamic, Constrained Multi-Objective Optimization

Abstract

Real-world optimization problems are often dynamic, multiple objective in nature with various constraints and uncertainties. This work proposes solving such problems by systematic segmentation via heuristic information accumulated through Cultural Algorithms. The problem is tackled by maintaining 1) feasible and infeasible best solutions and their fitness and constraint violations in the Situational Space, 2) objective space bounds for the search in the Normative Space, 3) objective space crowding information in the Topographic Space, and 4) function sensitivity and relocation offsets (to reuse available information on optima upon change of environments) in the Historical Space of a cultural framework. The information is used to vary the flight parameters of the Particle Swarm Optimization, to generate newer individuals and to better track dynamic and multiple optima with constraints. The proposed algorithm is validated on three numerical optimization problems. As a practical application case study that is computationally intensive and complex, parameter tuning of a PID (Proportional–Integral–Derivative) controller for plants with transfer functions that vary with time and imposed with robust optimization criteria has been used to demonstrate the effectiveness and efficiency of the proposed design.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!