
Real-world optimization problems are often dynamic, multiple objective in nature with various constraints and uncertainties. This work proposes solving such problems by systematic segmentation via heuristic information accumulated through Cultural Algorithms. The problem is tackled by maintaining 1) feasible and infeasible best solutions and their fitness and constraint violations in the Situational Space, 2) objective space bounds for the search in the Normative Space, 3) objective space crowding information in the Topographic Space, and 4) function sensitivity and relocation offsets (to reuse available information on optima upon change of environments) in the Historical Space of a cultural framework. The information is used to vary the flight parameters of the Particle Swarm Optimization, to generate newer individuals and to better track dynamic and multiple optima with constraints. The proposed algorithm is validated on three numerical optimization problems. As a practical application case study that is computationally intensive and complex, parameter tuning of a PID (Proportional–Integral–Derivative) controller for plants with transfer functions that vary with time and imposed with robust optimization criteria has been used to demonstrate the effectiveness and efficiency of the proposed design.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
