
handle: 2318/1949991
Stream Processing applications are spread across different sectors of industry and people’s daily lives. The increasing data we produce, such as audio, video, image, and text are demanding quickly and efficiently computation. It can be done through Stream Parallelism, which is still a challenging task and most reserved for experts. We introduce a Stream Processing framework for assessing Parallel Programming Interfaces (PPIs). Our framework targets multi-core architectures and C++ stream processing applications, providing an API that abstracts the details of the stream operators of these applications. Therefore, users can easily identify all the basic operators and implement parallelism through different PPIs. In this paper, we present the proposed framework, implement three applications using its API, and show how it works, by using it to parallelize and evaluate the applications with the PPIs Intel TBB, FastFlow, and SPar. The performance results were consistent with the literature.
Benchmark; Framework; Parallel Programming; Stream Processing
Benchmark; Framework; Parallel Programming; Stream Processing
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
