Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Nuclear C...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Nuclear Cardiology
Article . 2023 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Content-based image retrieval for the diagnosis of myocardial perfusion imaging using a deep convolutional autoencoder

Authors: Akinori, Higaki; Naoto, Kawaguchi; Tsukasa, Kurokawa; Hikaru, Okabe; Takuro, Kazatani; Shinsuke, Kido; Tetsuya, Aono; +10 Authors

Content-based image retrieval for the diagnosis of myocardial perfusion imaging using a deep convolutional autoencoder

Abstract

Single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) plays a crucial role in the optimal treatment strategy for patients with coronary heart disease. We tested the feasibility of feature extraction from MPI using a deep convolutional autoencoder (CAE) model.Eight hundred and forty-three pairs of stress and rest myocardial perfusion images were collected from consecutive patients who underwent cardiac scintigraphy in our hospital between December 2019 and February 2022. We trained a CAE model to reproduce the input paired image data, so as the encoder to output a 256-dimensional feature vector. The extracted feature vectors were further dimensionally reduced via principal component analysis (PCA) for data visualization. Content-based image retrieval (CBIR) was performed based on the cosine similarity of the feature vectors between the query and reference images. The agreement of the radiologist's finding between the query and retrieved MPI was evaluated using binary accuracy, precision, recall, and F1-score.A three-dimensional scatter plot with PCA revealed that feature vectors retained clinical information such as percent summed difference score, presence of ischemia, and the location of scar reported by radiologists. When CBIR was used as a similarity-based diagnostic tool, the binary accuracy was 81.0%.The results indicated the utility of unsupervised feature learning for CBIR in MPI.

Keywords

Tomography, Emission-Computed, Single-Photon, Myocardial Perfusion Imaging, Humans, Heart, Neural Networks, Computer, Coronary Artery Disease

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!