Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ISPRS Annals of the ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.15488/10...
Article . 2019
License: CC BY
Data sources: Datacite
Copernicus Publications
Other literature type . 2019
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

COLLABORATIVE NAVIGATION SIMULATION TOOL USING KALMAN FILTER WITH IMPLICIT CONSTRAINTS

Authors: Hamza Alkhatib; Nicolas Garcia-Fernandez; Steffen Schön;

COLLABORATIVE NAVIGATION SIMULATION TOOL USING KALMAN FILTER WITH IMPLICIT CONSTRAINTS

Abstract

Abstract. Collaborative Positioning (CP) is a networked positioning technique in which different multi-sensor systems (nodes) enhance the accuracy and precision of these navigation solutions by performing measurements or by sharing information (links) between each other. The wide spectrum of available sensors that are used in these complex scenarios bring the necessity to analyze the sensibility of the system to different configurations in order to find optimal solutions. In this paper, we discuss the implementation and evaluation of a simulation tool that allows us to study these questions. The simulation tool is successfully implemented as a plane based localization problem, in which the sensor measurements are fused in a Collaborative Extended Kalman Filter (C-EKF) algorithm with implicit constraints. Using a real urban scenario with three vehicles equipped with various positioning sensors, the impact of the sensor configuration is investigated and discussed by intensive Monte Carlo simulations. The results show the influence of the laser scanner measurements on the accuracy and precision of the estimation, and the increased performance of the collaborative navigation techniques with respect to the single vehicle method.

Related Organizations
Keywords

Extended Kalman filters, Sensor configurations, Dewey Decimal Classification::500 | Naturwissenschaften::550 | Geowissenschaften, Technology, Multi-sensor fusion, Multi-sensor systems, T, Monte Carlo Simulation, Monte Carlo methods, Engineering (General). Civil engineering (General), Collaborative Navigation, Positioning techniques, Navigation, TA1501-1820, Extended Kalman Filter (EKF), Intelligent systems, Localization problems, Applied optics. Photonics, Collaborative navigation, TA1-2040, Implicit constraints, Konferenzschrift, Accuracy and precision

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold