Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/dac180...
Article . 2021 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Distributed Memory Guard: Enabling Secure Enclave Computing in NoC-based Architectures

Authors: Ghada Dessouky; Mihailo Isakov; Michel A. Kinsy; Pouya Mahmoody; Miguel Mark; Ahmad-Reza Sadeghi; Emmanuel Stapf; +1 Authors

Distributed Memory Guard: Enabling Secure Enclave Computing in NoC-based Architectures

Abstract

Emerging applications, like cloud services, are demanding more computational power, while also giving rise to various security and privacy challenges. Current multi-/many-core chip designs boost performance by using Networks-on-Chip (NoC) based architectures. Although NoC-based architectures significantly improve communication concurrency, they have thus far lack adequate security mechanisms such as enforceable process isolation. On the other hand, new security-aware architectures that protect applications and sensitive services in isolated execution environments, i.e., enclaves, have not been extended to provide comprehensive protection for NoC platforms. These enclave-based architectures (i) lack secure enclave-device interaction, (ii) cannot include unmodifiable third-party IP, or (iii) provide flexible enclave memory management.To address these design challenges, we introduce a new hardware security primitive, the Distributed Memory Guard, and design the first security architecture that protects sensitive services in NoC-based enclaves. We provide evaluation of this reference architecture and highlight the fact that one can design a scalable (i.e., NoC-based) and secure (i.e., enclave-based) architecture with minimal hardware complexity and system performance overhead.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!