
Emerging applications, like cloud services, are demanding more computational power, while also giving rise to various security and privacy challenges. Current multi-/many-core chip designs boost performance by using Networks-on-Chip (NoC) based architectures. Although NoC-based architectures significantly improve communication concurrency, they have thus far lack adequate security mechanisms such as enforceable process isolation. On the other hand, new security-aware architectures that protect applications and sensitive services in isolated execution environments, i.e., enclaves, have not been extended to provide comprehensive protection for NoC platforms. These enclave-based architectures (i) lack secure enclave-device interaction, (ii) cannot include unmodifiable third-party IP, or (iii) provide flexible enclave memory management.To address these design challenges, we introduce a new hardware security primitive, the Distributed Memory Guard, and design the first security architecture that protects sensitive services in NoC-based enclaves. We provide evaluation of this reference architecture and highlight the fact that one can design a scalable (i.e., NoC-based) and secure (i.e., enclave-based) architecture with minimal hardware complexity and system performance overhead.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
