Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Труды Института сист...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Approaches to Stand-alone Verification of Multicore Microprocessor Caches

Подходы к автономной верификации кэш-памятей многоядерных микропроцессоров
Authors: PETROCHENKOV M.; STOTLAND I.; MUSHTAKOV R.;

Approaches to Stand-alone Verification of Multicore Microprocessor Caches

Abstract

The paper presents an overview of approaches used in verifying correctness of multicore microprocessors caches. Common properties of memory subsystem devices and those specific to caches are described. We describe the method to support memory consistency in a system using cache coherence protocol. The approaches for designing a test system, generating valid stimuli and checking the correctness of the device under verification (DUV) are introduced. Adjustments to the approach for supporting generation of out-of-order test stimuli are provided. Methods of the test system development on different abstraction levels are presented. We provide basic approach to device behavior checking - implementing a functional reference model, reactions of this model could be compared to device reactions, miscompare denotes an error. Methods for verification of functionally nondeterministic devices are described: the «gray box» method based on elimination of nondeterministic behavior using internal interfaces of the implementation and the novel approach based on the dynamic refinement of the behavioral model using device reactions. We also provide a way to augment a stimulus generator with assertions to further increase error detection capabilities of the test system. Additionally, we describe how the test systems for devices, that support out of order execution, could be designed. We present the approach to simplify checking of nondeterministic devices with out-of-order execution of requests using a reference order of instructions. In conclusion, we provide the case study of using these approaches to verify caches of microprocessors with “Elbrus” architecture and “SPARC-V9” architecture.

Keywords

недетерминированное поведение, Electronic computers. Computer science, кэш-память, «sparc-v9», тестовая система, автономная верификация, QA75.5-76.95, микропроцессор «эльбрус», MULTICORE MICROPROCESSORS,CACHE MEMORY,OUT-OF-ORDER EXECUTION,TEST SYSTEM,NONDETERMINISTIC BEHAVIOR,MODEL-BASED VERIFICATION,STAND-ALONE VERIFICATION,"SPARC-V9","ELBRUS-8C",МНОГОЯДЕРНЫЙ МИКРОПРОЦЕССОР,КЭШ-ПАМЯТЬ,ВНЕОЧЕРЕДНОЕ ИСПОЛНЕНИЕ,ТЕСТОВАЯ СИСТЕМА,НЕДЕТЕРМИНИРОВАННОЕ ПОВЕДЕНИЕ,ВЕРИФИКАЦИЯ НА ОСНОВЕ ЭТАЛОННЫХ МОДЕЛЕЙ,АВТОНОМНАЯ ВЕРИФИКАЦИЯ,МИКРОПРОЦЕССОР "ЭЛЬБРУС", внеочередное исполнение, верификация на основе эталонных моделей, многоядерный микропроцессор

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold