Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Arab Journal of Basi...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Arab Journal of Basic and Applied Sciences
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Mutation prediction and phylogenetic analysis of SARS-CoV2 protein sequences using LSTM based encoder-decoder model

Authors: Sweeti Sah; B. Surendiran; R. Dhanalakshmi; Sachi Nandan Mohanty;

Mutation prediction and phylogenetic analysis of SARS-CoV2 protein sequences using LSTM based encoder-decoder model

Abstract

AbstractThe ongoing evolution and mutation of SARS-CoV2 pose a significant challenge to the development of effective medication, as genetic changes can render previously developed drugs ineffective. To address this issue, researchers are exploring various strategies to predict and assess the emergence of novel SARS-CoV2 strains through phylogenetic analysis and mutation prediction. In recent years, deep learning approaches have been applied to studying viruses, including SARS-CoV2, to improve our understanding of virus evolution, structure, categorization, and prediction. In this study, a novel deep learning approach is proposed to predict and assess SARS-CoV2 protein sequences. Specifically, Long Short-Term Memory (LSTM) is utilized to predict protein sequences from aligned input sequences, with a bioinformatics tool used to detect mutations. The deep learning model proposed in this study exhibits high accuracy in predicting several key SARS-CoV2 protein sequences, including spike, replicase, putative, ORF1a, and nucleocapsid. The study uses genome sequencing data from the National Center for Biotechnology Information (NCBI) and demonstrates a 98% accuracy in predicting genomic sequences, with minimal changes observed in protein sequences. This study represents a significant improvement over previous research, which has focused only on predicting mutations in viral RNA sequences using datasets from other viruses.

Keywords

Seq2Seq, Science, SARS-CoV2, Q, prediction, genomic sequence, LSTM, protein

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold
Related to Research communities