Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2020
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
eResearch@Ozyegin
Article . 2020
Data sources: eResearch@Ozyegin
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Deep Q-Learning Based Optimization of VLC Systems With Dynamic Time-Division Multiplexing

Authors: Umair F. Siddiqi; Sadiq M. Sait; Murat Uysal;

Deep Q-Learning Based Optimization of VLC Systems With Dynamic Time-Division Multiplexing

Abstract

The traditional method to solve nondeterministic-polynomial-time (NP)-hard optimization problems is to apply meta-heuristic algorithms. In contrast, Deep Q Learning (DQL) uses memory of experience and deep neural network (DNN) to choose steps and progress towards solving the problem. The dynamic time-division multiple access (DTDMA) scheme is a viable transmission method in visible light communication (VLC) systems. In DTDMA systems, the time-slots of the users are adjusted to maximize the spectral efficiency (SE) of the system. The users in a VLC network have different channel gains because of their physical locations, and the use of variable time-slots can improve the system performance. In this work, we propose a Markov decision process (MDP) model of the DTDMA-based VLC system. The MDP model integrates into deep Q learning (DQL) and provides information to it according to the behavior of the VLC system and the objective to maximize the SE. When we use the proposed MDP model in deep Q learning with experienced replay algorithm, we provide the light emitting diode (LED)-based transmitter an autonomy to solve the problem so it can adjust the time-slots of users using the data collected by device in the past. The proposed model includes definitions of the state, actions, and rewards based on the specific characteristics of the problem. Simulations show that the performance of the proposed DQL method can produce results that are competitive to the well-known metaheuristic algorithms, such as Simulated Annealing and Tabu search algorithms.

Keywords

Deep reinforcement learning, Optimization, Deep Q learning, deep reinforcement learning, visible light communications, TK1-9971, Visible light communications, Dynamic time division multiple access, Electrical engineering. Electronics. Nuclear engineering, dynamic time division multiple access, optimization, non-deterministic algorithms, Non-deterministic algorithms

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Top 10%
Green
gold