
The best possible estimates for Lebesgue integral means $m_q(r,F)\; (1\le q<+\infty)$ for the pair of functions $F= g+i\:\breve{g}$, here $g$ - Green's potential, $\breve{g}$ - function conjugate to $g$, was obtained. It generalizes well-known results of Ya.V. Vasyl'kiv and A.A. Kondratyuk for logarithms $\log\; B$ of Blaschke products $B$ in terms of counting function $n(r,0,B)\; (0<r<1)$ of their zeroes.
Green's potentials, distribution of values of subharmonic functions, Потенціали Ґріна, спряжені функції, лебегові інтегральні середні, розподіл значень субгармонійних функцій, lebesgue integral means, green's potentials, Potentials and capacity, harmonic measure, extremal length and related notions in two dimensions, Boundary behavior (theorems of Fatou type, etc.) of harmonic functions in two dimensions, Lebesgue integral means, Maximum principle, Schwarz's lemma, Lindelöf principle, analogues and generalizations; subordination, Потенциалы Грина, сопряженная функция, интегральные средние Лебега, распределение значений субгармонических функций, QA1-939, conjugate function, Green's potentials, conjugate function, Lebesgue integral means, distribution of values of subharmonic functions, Harmonic, subharmonic, superharmonic functions in two dimensions, Mathematics
Green's potentials, distribution of values of subharmonic functions, Потенціали Ґріна, спряжені функції, лебегові інтегральні середні, розподіл значень субгармонійних функцій, lebesgue integral means, green's potentials, Potentials and capacity, harmonic measure, extremal length and related notions in two dimensions, Boundary behavior (theorems of Fatou type, etc.) of harmonic functions in two dimensions, Lebesgue integral means, Maximum principle, Schwarz's lemma, Lindelöf principle, analogues and generalizations; subordination, Потенциалы Грина, сопряженная функция, интегральные средние Лебега, распределение значений субгармонических функций, QA1-939, conjugate function, Green's potentials, conjugate function, Lebesgue integral means, distribution of values of subharmonic functions, Harmonic, subharmonic, superharmonic functions in two dimensions, Mathematics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
