
arXiv: 2306.17511
Algebraic Combinatorics originated in Algebra and Representation Theory, studying their discrete objects and integral quantities via combinatorial methods which have since developed independent and self-contained lives and brought us some beautiful formulas and combinatorial interpretations. The flagship hook-length formula counts the number of Standard Young Tableaux, which also gives the dimension of the irreducible Specht modules of the Symmetric group. The elegant Littlewood-Richardson rule gives the multiplicities of irreducible GL-modules in the tensor products of GL-modules. Such formulas and rules have inspired large areas of study and development beyond Algebra and Combinatorics, becoming applicable to Integrable Probability and Statistical Mechanics, and Computational Complexity Theory. We will see what lies beyond the reach of such nice product formulas and combinatorial interpretations and enter the realm of Computational Complexity Theory, that could formally explain the beauty we see and the difficulties we encounter in finding further formulas and ``combinatorial interpretations''. A 85-year-old such problem asks for a positive combinatorial formula for the Kronecker coefficients of the Symmetric group, another one pertains to the plethysm coefficients of the General Linear group. In the opposite direction, the study of Kronecker and plethysm coefficients leads to the disproof of the wishful approach of Geometric Complexity Theory (GCT) towards the resolution of the algebraic P vs NP Millennium problem, the VP vs VNP problem. In order to make GCT work and establish computational complexity lower bounds, we need to understand representation theoretic multiplicities in further detail, possibly asymptotically.
Notes associated with the Current Developments in Mathematics 2023 talk
FOS: Computer and information sciences, Computer Science - Computational Complexity, FOS: Mathematics, Mathematics - Combinatorics, Combinatorics (math.CO), Computational Complexity (cs.CC), Representation Theory (math.RT), Mathematics - Representation Theory
FOS: Computer and information sciences, Computer Science - Computational Complexity, FOS: Mathematics, Mathematics - Combinatorics, Combinatorics (math.CO), Computational Complexity (cs.CC), Representation Theory (math.RT), Mathematics - Representation Theory
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
