
Advanced memory optimization techniques are reviewed to enhance the performance of Convolutional Neural Networks (CNNs) and Spiking Neural Networks (SNNs) on hardware accelerators, addressing the real-world challenges in medical imaging. This review evaluates various platforms: In-Memory Computing (IMC), Field-Programmable Gate Array (FPGA), Python Productivity for Zynq (PYNQ-Z2), Graphics Processing Unit (GPU), and Application-Specific Integrated Circuit (ASIC) concerning overcoming memory bottlenecks, minimizing latency, and reducing energy consumption in Magnetic Resonance Imaging (MRI) reconstruction, Computed Tomography (CT) scan analysis, and real-time diagnostics. It will analyze techniques like memory compression, tiling, hierarchical memory management, and neural network pruning to improve computation efficiency. In addition, in-memory computing will be a key focus to mitigate the inefficiency of data movement, adaptability of Field-Programmable Gate Array (FPGA) for custom workloads, parallel processing by Graphics Processing Unit (GPU), and domain-specific optimizations of Application-Specific Integrated Circuit (ASIC). This review addresses the challenges of high-resolution image processing and energy constraints to provide a comprehensive guide to scalable, efficient hardware accelerators for neural networks in medical imaging.
Memory optimization, in-memory computing, medical imaging, Electrical engineering. Electronics. Nuclear engineering, neural networks, hardware accelerators, FPGA, TK1-9971
Memory optimization, in-memory computing, medical imaging, Electrical engineering. Electronics. Nuclear engineering, neural networks, hardware accelerators, FPGA, TK1-9971
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
