Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2025
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Comprehensive Review on the Exploitation of Advanced Memory Optimization Strategies to Improve Performance for Convolutional and Spiking Neural Networks in Medical Imaging Using Hardware Accelerators

Authors: N. Srikanth Prasad; S. Sundar;

Comprehensive Review on the Exploitation of Advanced Memory Optimization Strategies to Improve Performance for Convolutional and Spiking Neural Networks in Medical Imaging Using Hardware Accelerators

Abstract

Advanced memory optimization techniques are reviewed to enhance the performance of Convolutional Neural Networks (CNNs) and Spiking Neural Networks (SNNs) on hardware accelerators, addressing the real-world challenges in medical imaging. This review evaluates various platforms: In-Memory Computing (IMC), Field-Programmable Gate Array (FPGA), Python Productivity for Zynq (PYNQ-Z2), Graphics Processing Unit (GPU), and Application-Specific Integrated Circuit (ASIC) concerning overcoming memory bottlenecks, minimizing latency, and reducing energy consumption in Magnetic Resonance Imaging (MRI) reconstruction, Computed Tomography (CT) scan analysis, and real-time diagnostics. It will analyze techniques like memory compression, tiling, hierarchical memory management, and neural network pruning to improve computation efficiency. In addition, in-memory computing will be a key focus to mitigate the inefficiency of data movement, adaptability of Field-Programmable Gate Array (FPGA) for custom workloads, parallel processing by Graphics Processing Unit (GPU), and domain-specific optimizations of Application-Specific Integrated Circuit (ASIC). This review addresses the challenges of high-resolution image processing and energy constraints to provide a comprehensive guide to scalable, efficient hardware accelerators for neural networks in medical imaging.

Related Organizations
Keywords

Memory optimization, in-memory computing, medical imaging, Electrical engineering. Electronics. Nuclear engineering, neural networks, hardware accelerators, FPGA, TK1-9971

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold