Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Concurrency Practice...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Concurrency Practice and Experience
Article . 1997 . Peer-reviewed
License: Wiley TDM
Data sources: Crossref
DBLP
Article
Data sources: DBLP
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Optimizing Java bytecodes

Authors: Michal Cierniak; Wei Li 0015;

Optimizing Java bytecodes

Abstract

We have developed a research compiler for Java class files. The compiler, which we call Briki, is designed to test new compilation techniques. We focus on optimizations which are only possible or much easier to perform on a high-level intermediate representation. We have designed such a representation, JavaIR, and have written a front-end which recovers high-level structure from the information from the class file. Some of the high-level optimizations can be performed by the Java compiler which produces the class file. There is however a set of machine-dependent optimizations which have to be customized for the specific architecture and so can only be performed when the machine code is generated from the bytecodes, e.g, in a Just-In-Time (JIT) compiler. We choose memory hierarchy optimizations as an example of machine-dependent techniques. We show that there is an intersection of the set of machine-dependent optimizations and the set of high-level optimizations. One such example is array remapping which requires multi-dimensional array references which are not present in the bytecodes and at the same time requires information about memory organization and the mapping of bytecodes to machine instructions. We develop a set of optimizations for accessing array elements and object fields and show their impact on set of benchmarks which we run on two machines with a JIT compiler. The execution times are reduced by as much as 50% and we argue that the improvement could be even higher with a more mature JIT technology.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Average
Top 10%
Average
bronze