
Recently, a new polynomial basis over finite fields was proposed such that the computational complexity of the fast Fourier transform (FFT) is $O(n\log n)$ . Based on FFTs, the encoding and decoding algorithms for Reed-Solomon (RS) codes were proposed, which are shown to have the lowest computational complexity in the literature. However, these algorithms require that the code length and the number of parity symbols must be power of two. In this letter, we present the encoding and decoding algorithms for arbitrary RS codes based on FFTs. Furthermore, these new algorithms also reach the best known complexity bound.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 12 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
